Étant donné un DF:

pd.DataFrame({"A":[1,2,3],
              "B": [{"Mon":"Closed", "Tue":"Open", "Wed":"Closed"},
                    {"Mon":"Open", "Tue":"Open", "Wed":"Closed"},
                    {"Mon":"Open", "Tue":"Open", "Wed":"Open"}]
              })

Comment puis-je compter le nombre de fois où "Closed" apparaît dans le dict?

A  B    count
1 {..}  2
2 {..}  1 
3 {..}  0

Je ne sais vraiment pas par où commencer pour essayer

4
jxn 1 juin 2020 à 18:45

7 réponses

Meilleure réponse

Vous pouvez faire une apply:

df['count'] = df.B.apply(pd.Series).eq('Closed').sum(1)

Production:

   A                                                  B  count
0  1  {'Mon': 'Closed', 'Tue': 'Open', 'Wed': 'Closed'}      2
1  2    {'Mon': 'Open', 'Tue': 'Open', 'Wed': 'Closed'}      1
2  3      {'Mon': 'Open', 'Tue': 'Open', 'Wed': 'Open'}      0
4
Quang Hoang 1 juin 2020 à 15:47

Veuillez ne pas mettre de dictionnaires dans des colonnes de dataframe. Vous perdez toute la vitesse des opérations vectorisées et vous rendez les valeurs difficiles d'accès.

Nettoyez votre df:

>>> df = pd.concat([df['A'], df['B'].apply(pd.Series)], axis=1)
>>> df 
   A     Mon   Tue     Wed
0  1  Closed  Open  Closed
1  2    Open  Open  Closed
2  3    Open  Open    Open

Maintenant, compter 'Closed' est facile.

>>> df['count'] = df.eq('Closed').sum(1)
>>> df
   A     Mon   Tue     Wed  count
0  1  Closed  Open  Closed      2
1  2    Open  Open  Closed      1
2  3    Open  Open    Open      0
0
timgeb 1 juin 2020 à 15:56

Je ferai

df.B.astype(str).str.count('Closed')
Out[30]: 
0    2
1    1
2    0
Name: B, dtype: int64

Ou

df['Cnt']=pd.DataFrame(df.B.tolist()).eq('Closed').sum(1).values
Out[35]: 
0    2
1    1
2    0
dtype: int64
2
BEN_YO 1 juin 2020 à 15:51

Vous pouvez essayer de convertir la série de dictionnaires en une trame de données, puis stack, puis prendre la somme de Closed valeurs au niveau = 0 pour obtenir le nombre par ligne:

df['Count_closed'] = pd.DataFrame(df['B'].tolist()).stack().eq("Closed").sum(level=0)

   A                                                  B  Count_closed
0  1  {'Mon': 'Closed', 'Tue': 'Open', 'Wed': 'Closed'}           2.0
1  2    {'Mon': 'Open', 'Tue': 'Open', 'Wed': 'Closed'}           1.0
2  3      {'Mon': 'Open', 'Tue': 'Open', 'Wed': 'Open'}           0.0
3
anky 1 juin 2020 à 15:47

Solution .apply() simple:

df['Count'] = df.B.apply(lambda x: sum('Closed' in v for v in x.values()))
print(df)

Tirages:

   A                                                  B  Count
0  1  {'Mon': 'Closed', 'Tue': 'Open', 'Wed': 'Closed'}      2
1  2    {'Mon': 'Open', 'Tue': 'Open', 'Wed': 'Closed'}      1
2  3      {'Mon': 'Open', 'Tue': 'Open', 'Wed': 'Open'}      0

Référence:

import perfplot
import pandas as pd


def f1(df):
    df['Count'] = df.B.apply(lambda x: sum('Closed' in v for v in x.values()))
    return df

def f2(df):
    df['count'] = df.B.astype(str).str.count('Closed')
    return df

# Commented out because of timed-out:
# def f3(df):
#     df['count'] = df.B.apply(pd.Series).eq('Closed').sum(1)
#     return df

def f4(df):
    df['count'] = pd.DataFrame(df['B'].tolist()).stack().eq("Closed").sum(level=0)
    return df

def setup(n):
    A = [*range(n)]
    B = [{'Mon': 'Closed', 'Tue': 'Open', 'Wed': 'Closed'} for _ in range(n)]
    df = pd.DataFrame({'A': A,
                       'B': B})
    return df

perfplot.show(
    setup=setup,
    kernels=[f1, f2, f4],
    labels=['apply(sum)', 'str.count()', 'stack.eq()'],
    n_range=[10**i for i in range(1, 7)],
    xlabel='N (* len(df))',
    equality_check=None,
    logx=True,
    logy=True)

Résultat:

enter image description here

Il semble donc que le simple apply() avec sum() soit le plus rapide.

0
Andrej Kesely 1 juin 2020 à 16:42

Vous pouvez utiliser un compteur dans une simple compréhension de liste.

from collections import Counter

df['count'] = [Counter(x.values())['Closed'] for x in df.B]

#   A                                                  B  Count
#0  1  {'Mon': 'Closed', 'Tue': 'Open', 'Wed': 'Closed'}      2
#1  2    {'Mon': 'Open', 'Tue': 'Open', 'Wed': 'Closed'}      1
#2  3      {'Mon': 'Open', 'Tue': 'Open', 'Wed': 'Open'}      0
0
ALollz 1 juin 2020 à 17:02

Utilisez une fonction auxiliaire:

def aux_func(x):

    week_days = x.keys()
    count=0
    for day in week_days:
        if x[day]=='Closed':
            count+=1

    return count

counts = [aux_func(c) for c in df.loc[:,'B'] ]

df['counts'] = counts
0
mangelfdz 1 juin 2020 à 15:58