J'ai le bloc de données comme ci-dessous,

Input DataFrame
     gw_mac                 mac
 0   ac233fc015f6           dce83f3bc820
 1   ac233fc015f6           ac233f264a4c
 2   ac233fc015f6           ac233f264a4c
 3   ac233fc015f6           dce83f3bc820
 4   ac233fc015f6           ac233f264a4c
 5   ac233fc015f6           ac233f264a4c
 6   ac233fc015f6           dce83f3bc820
 7   ac233fc015f6           e464eecba5eb

Maintenant, je dois regrouper la trame de données en fonction des valeurs de colonne "gw_mac" et "mac" et je devrais obtenir les trois groupes différents suivants

Expected Output
Group1

     gw_mac                 mac
 0   ac233fc015f6           dce83f3bc820
 3   ac233fc015f6           dce83f3bc820
 6   ac233fc015f6           dce83f3bc820

Group2
      gw_mac                 mac
  1   ac233fc015f6           ac233f264a4c
  2   ac233fc015f6           ac233f264a4c
  4   ac233fc015f6           ac233f264a4c
  5   ac233fc015f6           ac233f264a4c

Group3
      gw_mac                 mac
  7   ac233fc015f6           e464eecba5eb
4
Mahamutha M 19 mars 2019 à 15:05

2 réponses

Meilleure réponse

Si vous avez besoin de différents groupes par colonnes, bouclez par objet groupby:

for i, g in df.groupby(['gw_mac','mac']):
    print (g)
         gw_mac           mac
1  ac233fc015f6  ac233f264a4c
2  ac233fc015f6  ac233f264a4c
4  ac233fc015f6  ac233f264a4c
5  ac233fc015f6  ac233f264a4c
         gw_mac           mac
0  ac233fc015f6  dce83f3bc820
3  ac233fc015f6  dce83f3bc820
6  ac233fc015f6  dce83f3bc820
         gw_mac           mac
7  ac233fc015f6  e464eecba5eb
6
jezrael 19 mars 2019 à 12:08

Vous pouvez essayer cela pour créer un dictionnaire de trames de données avec des groupes uniques,

df['Group'] = df.groupby(['gw_mac', 'mac']).cumcount()

dfs = dict(tuple(df.groupby('Group')))

Vous pouvez accéder à un groupe en utilisant,

dfs[0]

    gw_mac          mac             Group
0   ac233fc015f6    dce83f3bc820    0
1   ac233fc015f6    ac233f264a4c    0
7   ac233fc015f6    e464eecba5eb    0
2
Vaishali 19 mars 2019 à 12:25